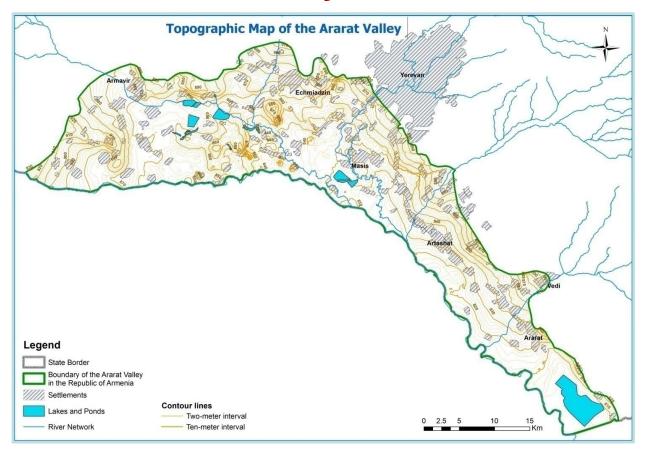


Advanced Science & Partnerships for Integrated Resource Development (ASPIRED) Project

Decision Support Tools, including Ararat Valley Groundwater Basin Modeling

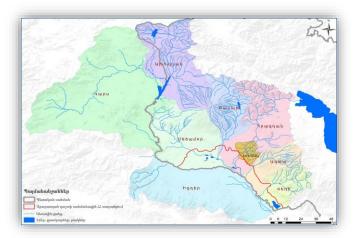
Lilith Harutyunyan Project Specialist

> Armenia Marriott Hotel 22 March 2019

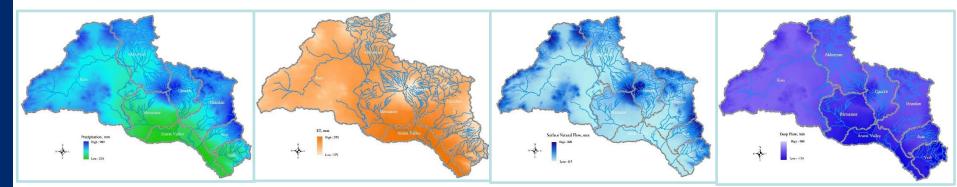

Decision Support Tools

- ✓ Customizing the Decision Support System (DSS) for Ararat Valley
 - Water balance
 - Climate change assessment
 - Water supply and demand balance, including calculation of ecological flow values
- ✓ Developing the 3D model of the Ararat Valley groundwater basin
- Constructing the numeric groundwater flow model of the Ararat Valley

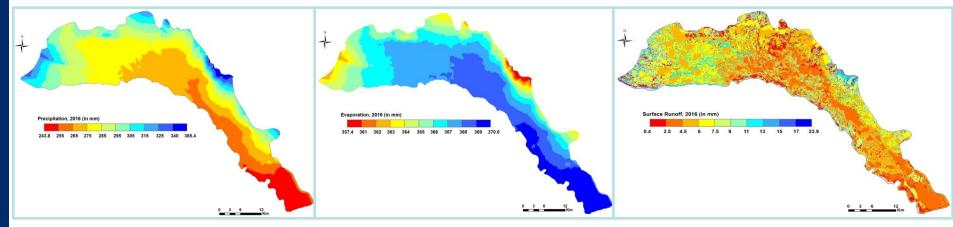
Activities are implemented in close collaboration with the US-based CADI and AQUAVEO organizations and the US Geological Survey


Study area

Ararat Valley is located at elevations ranging from 800 to 930 m above sea level and occupies an area of 1177 km² in Armenia

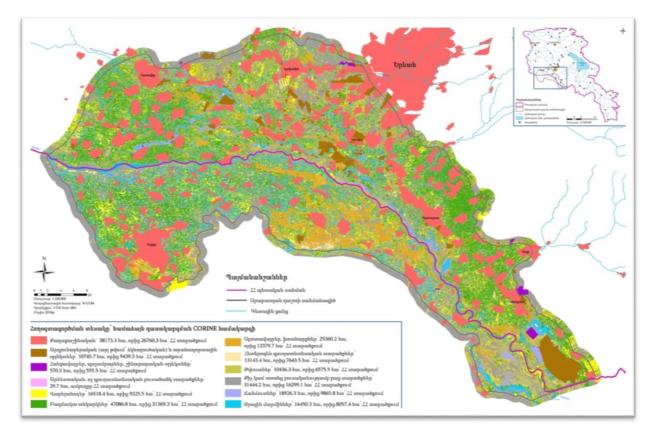


Ararat Valley catchment area: annual water balance for 2016 and multiannual average water balance for the period of 1961-2016


Ararat Valley catchment area:

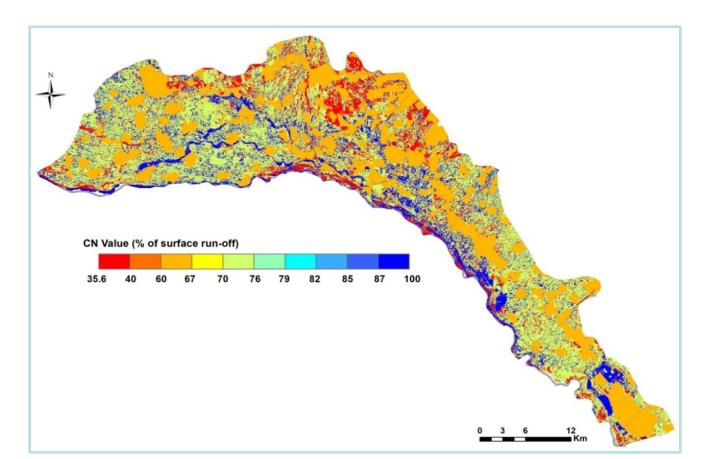
Akhuryan (including Kars), Metsamor (including Qasakh), Hrazdan, Azat, Vedi river basins

Ararat Valley: annual water balance of the for 2016 and multiannual average water balance for the period of 1961-2016



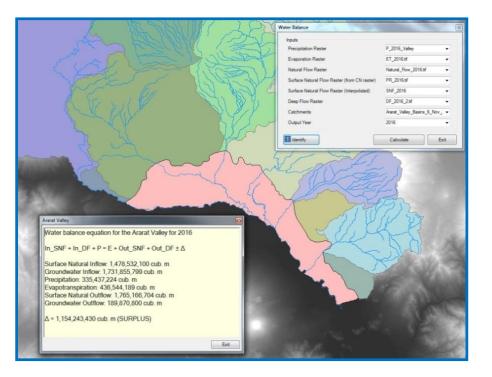
Data sources:

- Service of Hydrometeorology and Active Influence on Atmospheric Phenomena of the Ministry of Emergency Situations of Armenia
- Water Resources Management Agency of the Ministry of Nature Protection of Armenia
- Water Committee of the Ministry of Energy Infrastructures and Natural Resources of Armenia



Classification of the actual landcover/use of the Ararat Valley for 2016, applying remote sensing analysis of the high-resolution satellite images

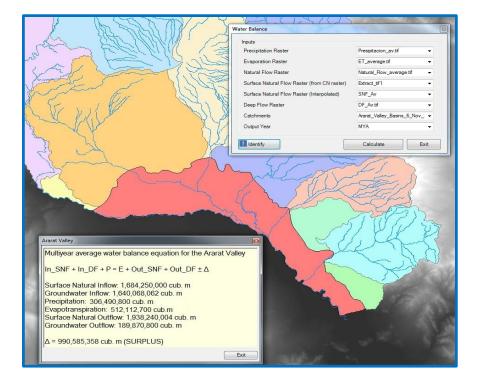
Generating precipitation-runoff raster image of the Ararat Valley for 2016



7

Annual water balance of the Ararat Valley for 2016

 $P + SW_{in} + GW_{in} = ET + SW_{out} + GW_{out} + \Delta$



- $P = 335.4 \text{ million } m^3$
- SW_{in} = 1,478.5 million m³
- **GW**_{in} = 1,731.9 million m³
- $ET = 436.5 \text{ million } \text{m}^3$
- SW_{out} = 1,765.2 million m³
- GW_{out} = 189.9 million m³
- Δ = 1,154.3 million m³

Multiannual average water balance of the Ararat Valley for the period of 1961-2016

$P + SW_{in} + GW_{in} = ET + SW_{out} + GW_{out} + \Delta$

- $P = 306.5 \text{ million } m^3$
- $SW_{in} = 1,684.3 \text{ million } \text{m}^3$
- $GW_{in} = 1,640.0 \text{ million } \text{m}^3$
- $ET = 512.1 \text{ million } \text{m}^3$
- SW_{out} = 1938.2 million m³
- GW_{out} = 189.9 million m³
- Δ = 990.6 million m³

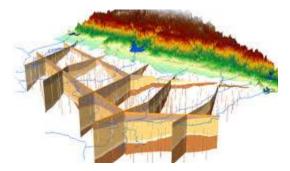
Climate change assessment: trends

Deviations in climatic and hydrological parameters occurred in the period of 1991-2016 against the average values in the base period (1961-1990)

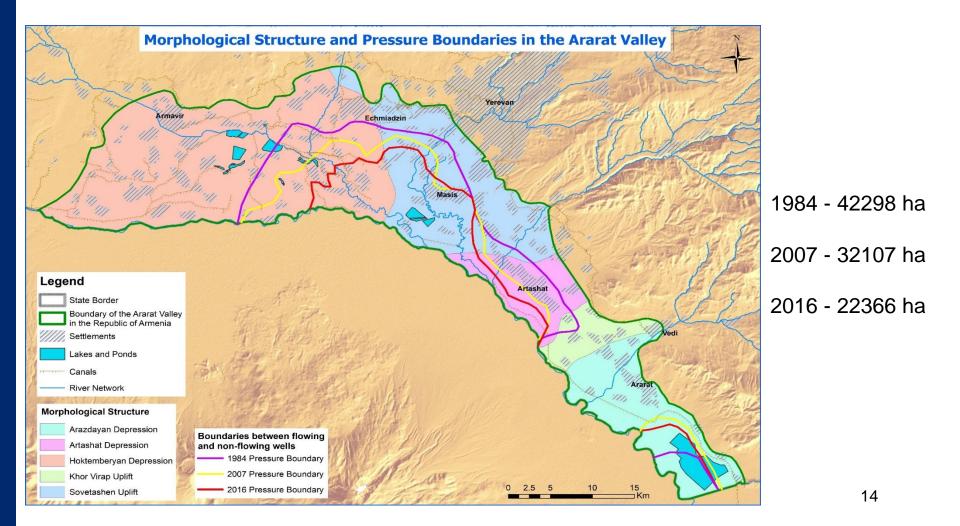
- ✓ Annual mean air temperature: from +0.3 $^{\circ}$ C to +0.6 $^{\circ}$ C
- ✓ Annual mean precipitation: -3.0 mm
- \checkmark Runoff depth: from -0.2% to -19.4 %

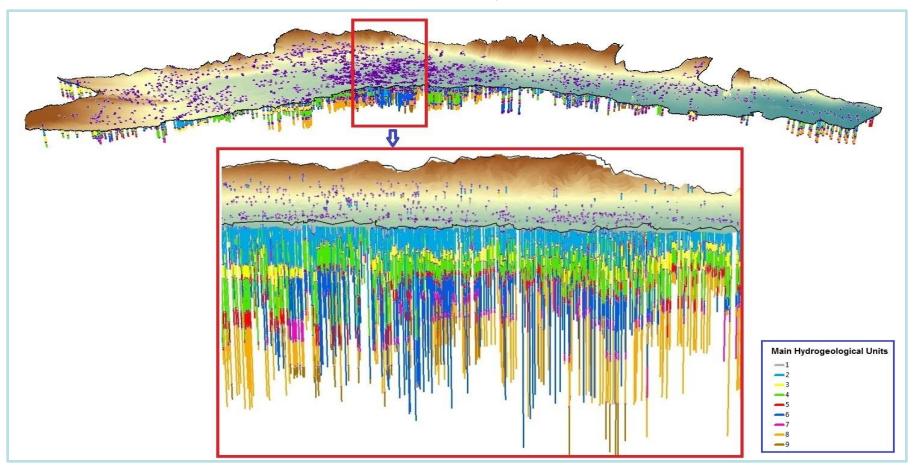
Climate change assessment: projections

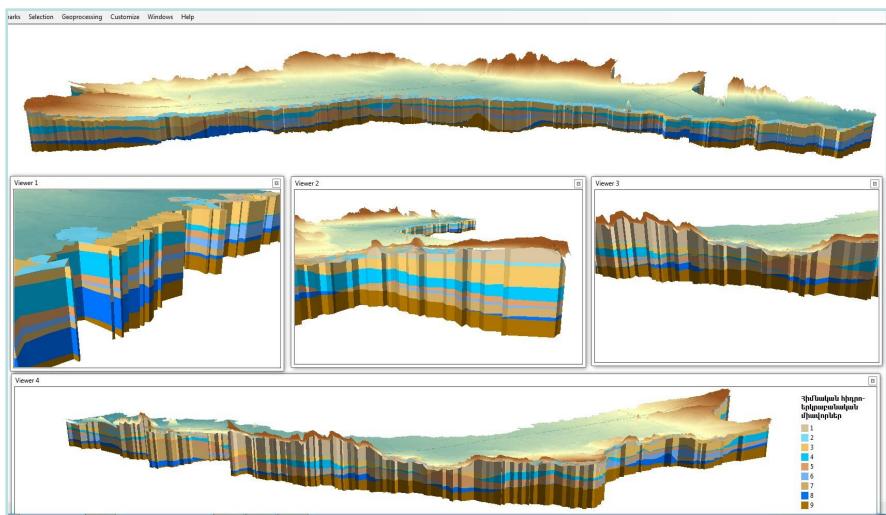
Projection of values of the natural surface inflow and outflow and groundwater inflow and outflow for the Ararat Valley under the different climate change scenarios (A2, B1).


- ✓ Calculation of the water supply and demand balance of the Ararat Valley for 2016 to estimate surplus or deficit of water resources in conditions of water use
- Calculation of ecological flow at hydrological observation posts and water abstraction points

3D Model of the Ararat Valley Groundwater Basin


ArcGIS and Arc Hydro Groundwater Tools


Pressure Boundaries in the Ararat Valley


Constructing the 3D Model of the Ararat Valley Groundwater Basin

Based on the 2016 inventory data on 2800 wells

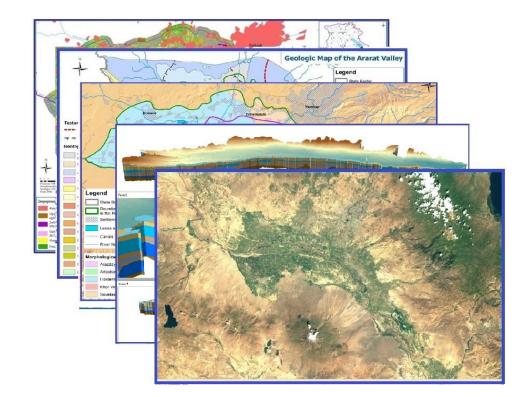
Main Hydrogeological Units of the Ararat Valley Groundwater Basin

Main Hydrogeological Units of the Ararat Valley and the Potential Volumes

- ✓ Volume of 4 layers with **high** water bearing potential: 56 billion m³
- \checkmark Volume of 5 layers with **low** water bearing potential: 149.5 billion m³
- ✓ Total potential volume of all 9 layers: 205.5 billion m³

Unit ID	Primary geological material	Lowest absolute altitude of the bottom of the layer (m)	Highest absolute altitude of the bottom of the layer (m)	Average thickness of the unit (m)	Water- bearing potential	Volume (m ³)
1	Loam/clay	800.1	940.8	8	Low	6,330,194,705.51
2	Gravel	781.3	933.7	32	High	6,209,862,654.76
3	Clay	745.1	912.7	14	Low	39,370,744,226.27
4	Gravel	738.1	887.5	27	High	20,747,927,834.63
5	Dense basalt/clay	731.2	869.1	9	Low	26,290,435,682.97
6	Gravel	705.1	879.9	17	High	12,987,106,831.46
7	Dense basalt/clay	642.7	826.8	10	Low	33,278,242,350.14
8	Gravel/fractured basalt	638.5	828.5	23	High	16,109,360,935.98
9	Dense clay	630.0	756.6	22	Low	50,605,160,940.10
Total volume of the layers with high water-bearing potential						56,054,258,256.83
Total volume of the layers with low water-bearing potential						149,544,583,199.48
Grand total volume						205,598,841,456.31

Constructing the Numeric Groundwater Flow Model of the Ararat Valley


This will allow determining:

- ✓ Groundwater reserve
- Recharge rate and changes in groundwater reserve, conditioned by water use in the Ararat Valley for various purposes
- Operational groundwater resources (sustainable rate of groundwater use)

Building Stakeholders Capacities

- Continuous training on ArcGIS mapping, modeling with DSS ArcHydroGroundwater, GMS and MODFLOW tools
- Preparing the Ararat Valley Atlas, using geospatial data and maps

Thank you